Heterogeneity of detergent-insoluble membranes from human intestine containing caveolin-1 and ganglioside G(M1).
نویسندگان
چکیده
In intestinal epithelia, cholera and related toxins elicit a cAMP-dependent chloride secretory response fundamental to the pathogenesis of toxigenic diarrhea. We recently proposed that specificity of cholera toxin (CT) action in model intestinal epithelia may depend on the toxin's cell surface receptor ganglioside G(M1). Binding G(M1) enabled the toxin to elicit a response, but forcing the toxin to enter the cell by binding the closely related ganglioside G(D1a) rendered the toxin inactive. The specificity of ganglioside function correlated with the ability of G(M1) to partition CT into detergent-insoluble glycosphingolipid-rich membranes (DIGs). To test the biological plausibility of these hypotheses, we examined native human intestinal epithelia. We show that human small intestinal epithelia contain DIGs that distinguish between toxin bound to G(M1) and G(D1a), thus providing a possible mechanism for enterotoxicity associated with CT. We find direct evidence for the presence of caveolin-1 in DIGs from human intestinal epithelia but find that these membranes are heterogeneous and that caveolin-1 is not a structural component of apical membrane DIGs that contain CT.
منابع مشابه
Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture.
Cultures of MDCK II and human fibroblast cells were fed radioactive sphingosine and a radioactive GM3 ganglioside derivative containing a photoactivable group. The derived cell homogenates were treated with Triton X-100 and fractionated by sucrose-gradient centrifugation to prepare a detergent-insoluble membrane fraction known to be enriched in sphingolipid and caveolin-1, i.e. of caveolae. The...
متن کاملGanglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor.
Although caveolin-1 is thought to facilitate the interaction of receptors and signaling components, its role in epidermal growth factor receptor (EGFR) signaling remains poorly understood. Ganglioside GM3 inhibits EGFR autophosphorylation and may thus affect the interaction of caveolin-1 and the EGFR. We report here that endogenous overexpression of GM3 leads to the clustering of GM3 on the cel...
متن کاملN-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae.
When variably fatty acylated N-terminal amino acid sequences were appended to a green fluorescent reporter protein (GFP), chimeric GFPs were localized to different membranes in a fatty acylation-dependent manner. To explore the mechanism of localization, the properties of acceptor membranes and their interaction with acylated chimeric GFPs were analyzed in COS-7 cells. Myristoylated GFPs contai...
متن کاملp56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner.
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with t...
متن کاملGanglioside glycosyltransferases and newly synthesized gangliosides are excluded from detergent-insoluble complexes of Golgi membranes.
GEM (glycosphingolipid-enriched microdomains) are specialized detergent-resistant domains of the plasma membrane in which some gangliosides concentrate. Although genesis of GEM is considered to occur in the Golgi complex, where the synthesis of gangliosides also occurs, the issue concerning the incorporation of ganglioside species into GEM is still poorly understood. In this work, using Chinese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2000